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Abstract. In special relativity a gyroscope that is sus-
pended in a torque-free manner will precess as it is moved
along a curved path relative to an inertial frame S. We
explain this effect, which is known as Thomas precession,
by considering a real grid that moves along with the gyro-
scope, and that by definition is not rotating as observed
from its own momentary inertial rest frame. From the
basic properties of the Lorentz transformation we deduce
how the form and rotation of the grid (and hence the
gyroscope) will evolve relative to S. As an intermediate
step we consider how the grid would appear if it were
not length contracted along the direction of motion. We
show that the uncontracted grid obeys a simple law of
rotation. This law simplifies the analysis of spin preces-
sion compared to more traditional approaches based on
Fermi transport. We also consider gyroscope precession
relative to an accelerated reference frame and show that
there are extra precession effects that can be explained
in a way analogous to the Thomas precession. Although
fully relativistically correct, the entire analysis is carried
out using three-vectors. By using the equivalence princi-
ple the formalism can also be applied to static spacetimes
in general relativity. As an example, we calculate the pre-
cession of a gyroscope orbiting a static black hole.

I Introduction

In Newtonian mechanics a spinning gyroscope, suspended
such that there are no torques acting on it, keeps its di-
rection fixed relative to an inertial system as we move the
gyroscope around a circle. However, in special relativity
the gyroscope will precess, meaning that the direction of
the gyroscope central axis will rotate, see Fig. 1.

If we denote the circle radius by R and the gyroscope
velocity by v we can express the angular velocity Ω of the
gyroscope precession as1

Ω = (γ − 1)
v

R
. (1)

Here γ = 1/
√

1 − v2/c2 and c is the speed of light. Hence-
forth, unless otherwise stated, we will for convenience
set c = 1. The precession given by Eq. (1) is known as
Thomas precession.2 In particular we note that for v " 1
and γ # 1, the right-hand side of Eq. (1) tends to be very

Figure 1: A gyroscope transported around a circle. The
vectors correspond to the central axis of the gyroscope at
different times. The Newtonian version is on the left, the
special relativistic version is on the right.

small. Thus to obtain a substantial angular velocity due
to this relativistic precession, we must have very high
velocities (or a very small circular radius).

In general relativity the situation becomes even more
interesting. For instance, we may consider a gyroscope
orbiting a static black hole at the photon radius (where
free photons can move in circles).3 The gyroscope will
precess as depicted in Fig. 2 independently of the velocity.

Figure 2: A gyroscope transported along a circle at the
photon radius of a static black hole. The gyroscope turns
so that it always points along the direction of motion.

How a gyroscope precesses for these examples can
be derived using four-vectors and Fermi transport.4 Al-
though the Fermi approach is very general, it typically
results in a set of coupled differential equations that are
rather complicated and do not provide much physical in-
sight (see Appendix A).

In the following we will take a different approach. We
start by discussing why there is Thomas precession in spe-
cial relativity. We also derive the exact relation, Eq. (1),
using only rudimentary knowledge of special relativity.
We then consider gyroscope precession with respect to an
accelerated reference frame within special relativity. We
show that if the gyroscope moves inertially, but the refer-
ence frame accelerates perpendicularly to the gyroscope
direction of motion, the gyroscope will precess relative to
the reference frame.

As an application where both the reference frame and
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the gyroscope accelerates we will consider a gyroscope on
a train that moves along an upward accelerating platform
as shown in Fig. 3.

v

Figure 3: A train at two consecutive times moving with
velocity v relative to a platform that accelerates upward.
A gyroscope with a torque free suspension on the train
will precess clockwise for v > 0.

If we neglect the Earth’s rotation, an ordinary plat-
form on Earth behaves just like an accelerated platform
in special relativity (the equivalence principle),5 so the
result can be applied to every day scenarios. The equiv-
alence principle also allows us to apply the analysis to a
gyroscope orbiting a black hole.

Sections II–VI assume knowledge of special relativity.
Knowledge of general relativity is assumed in Secs. VII–
IX.

II The gyroscope grid

Although spinning gyroscopes are the typical objects of
interest when discussing relativistic precession effects, we
will in the following consider a grid (say of metal) that
we call the gyroscope grid. This grid is by definition not
rotating as observed from its own momentary inertial
rest frame. The central axis of an ideal gyroscope with a
torque-free suspension is, by definition, also non-rotating
as observed from its own momentary inertial rest frame.
It follows that the axis of an ideal gyroscope, which is
transported together with the grid, will keep its direc-
tion fixed relative to the grid. Thus, the precession of an
actual gyroscope (assuming it behaves like an ideal gy-
roscope) follows from the behavior of the gyroscope grid.
The use of the grid will also allow us to put the effects of
precession due to the gyroscope grid acceleration on an
equal footing with the precession effects that come from
the acceleration of the reference frame.

A The boost concept

In special relativity, a Lorentz transformation to a new set
of coordinates, which are non-rotated relative to the orig-
inal coordinates, is known as a boost of the coordinates.6

Equivalently a physical boost of an object can be per-
formed. As seen by an observer at rest in a certain inertial
reference frame, a physical boost of an object by a certain
velocity is equivalent to performing a boost of the ob-
server’s reference frame by minus the velocity (while not
physically affecting the object). In particular, boosting

an object with respect to the object’s initial rest frame
means giving the object the velocity of the boost and
length contracting the object along the direction of mo-
tion. At times we will use the term pure boost to stress
the non-rotating aspect of the boost. We will also assume
that any real push of an object (such as the gyroscope
grid), works like a pure boost relative to the momentary
inertial rest frame of the object.

We will next illustrate how three consecutive physical
boosts of a grid, where the boosts are each non-rotating as
observed from the momentary rest frame of the grid, will
result in a net rotation. The result can be formally derived
by making successive Lorentz transformations (multiply-
ing matrices), but from the derivation in the next section
we can also understand how the rotation arises. The net
resulting rotation is the key to the Thomas precession as
presented here.

B The effect of three boosts

Consider a grid in two dimensions, initially at rest and
non-rotating relative to an inertial system S. We then
perform a series of boosts of the grid as sketched in Fig. 4.
Note especially what happens to the thick bar and its end
points.

(b)
(c)

(d)

(a)

Figure 4: (a) The grid at rest with respect to S. (b) The
grid after a pure boost with velocity v to the right, rela-
tive to S. Note the length contraction. (c) The grid after
a pure upward boost relative to a system S′ that moves
with velocity v to the right. (d) The grid after a pure
boost that stops the grid relative to S.

After the first boost by a velocity v to the right, the
grid is at rest relative to another inertial system S′. The
grid is then given a pure upward boost relative to S′

by a velocity δu′. Relative to the original system S, the
grid will then move in a direction n̂ up and to the right.
Through the upward boost the originally vertical grid
bars remain vertical relative to S′; thus they will also re-
main vertical relative to S, as follows from the Lorentz
transformation. However, the originally horizontal bars
will become rotated. To understand this rotation, con-
sider all of the events along a horizontal bar just as the
bar starts moving upward relative to S′. These events
are all simultaneous relative to S′, but relative to S the
rearmost event (the leftmost event) will happen first (rel-
ativity of simultaneity). Thus the leftmost part of the bar
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will have a head start (upward) relative to the rightmost
part, and the bar will therefore become rotated. Finally,
we stop the grid, in other words we make a pure boost
in the −n̂ direction, so that the grid stops relative to S.
The effect will be to remove the length contraction in the
n̂ direction, that is, to stretch the grid in the n̂ direction.
Through this stretching we understand that the originally
vertical grid bars will rotate clockwise. Because none of
the boosts deform the grid as observed in the grid’s own
momentary rest frame, it follows that the entire final grid
will be rotated clockwise relative to the original grid.

C Calculating the precise turning angle

The upward boost by a velocity δu′ relative to S′ yields
an upward velocity δu = δu′/γ (time dilation) as ob-
served from S. Consider now two points separated by a
distance L0 along an originally vertical bar of the grid, as
measured in the grid’s own frame. As observed in S′, the
distance between the points after the upward boost is,
due to length contraction, given by L = L0/γ(δu′). This
distance is also the distance between the points as ob-
served in S, as follows from the Lorentz transformation.
Also, the velocity of the points after the upward boost is
vx̂ + δuŷ as observed in S.

When we stop the grid, the length expansion (that is,
the removal of length contraction) will shift the topmost
point relative to the lowest point, resulting in a rotation
by an angle δα as depicted in Fig. 5. From the definitions
in Fig. 5 it follows that

L
L0

δs

δα

δθ

δθ

γδs

x

y

Stretch direction

v
δu

Figure 5: The stretch-induced tilt of the two points (the
filled circles) due to the final stopping of the grid. The
distance between the points prior to the stretching, as
measured in the direction of motion, is denoted by δs.

tan δθ =
δu

v
, sin(δα + δθ) =

γδs

L0
, sin δθ =

δs

L
. (2)

From now on we will assume that δu is infinitesimal. Be-
cause the γ-factor entering the relation between L and
L0 depends on (δu)2, we have L = L0 to first order in

δu. It follows that, to first order in δu, Eq. (2) reduces to

δθ =
δu

v
, δα + δθ =

γδs

L0
, δθ =

δs

L0
. (3)

From Eq. (3) we find

δα =
δu

v
(γ − 1). (4)

Here δα is the resultant clockwise angle of rotation of the
grid, after the three consecutive boosts. The result also
applies to a grid that was initially rotated by a certain
angle relative to the grid we considered above. To see this,
suppose that we perform the three boosts simultaneously
on the two grids. Because the boosts are all non-rotating
as observed in the momentary rest frame of the grids, the
relative angle between the grids must be preserved. Thus
Eq. (4) gives the angle of rotation resulting from the three
boosts in question, regardless of the initial rotation of the
grid.

For an infinitesimal boost in a general direction rel-
ative to S′, only the upward directed part of the boost
contributes to the rotation.7 Thus Eq. (4) holds also for
this case if we interpret δu in Eq. (4) as the part of the
infinitesimal velocity change that is perpendicular to the
direction of motion.

D The uncontracted grid

For a grid in motion relative to a certain specified refer-
ence frame (for example an inertial frame), we now in-
troduce what we call the uncontracted grid. This grid is
obtained by imagining the real grid without length con-
traction along the direction of motion. The idea is illus-
trated in Fig. 6.

Figure 6: The real grid (black thin lines) and the corre-
sponding imagined uncontracted grid (grey thick lines)
before and after a large upward boost.

From Fig. 4, we note that the imagined uncontracted
grid, immediately before and after the infinitesimal up-
ward boost, is identical (in form and rotation) to the
initial and the final actual grid respectively. From the
discussion at the end of Sec. II C it therefore follows that
for any real grid moving on a plane that receives an in-
finitesimal boost (non-rotating as observed in the grid’s
own momentary inertial rest frame) by a velocity δu per-
pendicular to the direction of motion, the corresponding
uncontracted grid will rotate an angle given by Eq. (4)
as

δα =
δu

v
(γ − 1). (5)
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Henceforth we will always describe the gyroscope grid in
terms of the uncontracted grid. If we have found the evo-
lution of the uncontracted grid for a particular path, we
can always find the observed real grid by length contract-
ing the uncontracted grid in the momentary direction of
motion.

E Circular motion

Consider a gyroscope grid moving with velocity v along a
circle of radius R. During a time step δt, the grid receives
an infinitesimal boost perpendicular to the direction of
motion. In the inertial frame of the circle the perpendic-
ular velocity change is given by

δu =
v2

R
δt. (6)

The corresponding uncontracted grid will rotate an angle
according to Eq. (5) during the boost. At the next time
step there is a new boost and a new induced rotation. It
follows that there is an ongoing precession of the uncon-
tracted grid as depicted in Fig. 7. The angular velocity
of rotation is given by Eqs. (5) and (6) as

δα

δt
= (γ − 1)

v

R
. (7)

Thus we have derived the Thomas precession given by
Eq. (1). Note that Eq. (7) describes how fast the imagined
uncontracted grid rotates.

Figure 7: A gyroscope grid at successive time steps. Both
the grid and the gyroscope are depicted as they would be
observed if they were uncontracted.

F The mathematical advantage of the un-
contracted grid

We have shown that the uncontracted grid evolves ac-
cording to a simple law of rotation. The central axis of
a gyroscope, if it were not length contracted along the
direction of motion, obeys the same simple law of rota-
tion. The actual axis of a gyroscope, however, changes its
length over time, and its angular velocity would not be as
simple as that given by Eq. (7). A differential equation for
the evolution of the actual axis, would hide the simple dy-
namics of a rotation and a superimposed length contrac-
tion, which would complicate the analysis. Similarly, the
standard approach to calculating gyroscope precession,

which uses the Fermi transport equation for the spin vec-
tor of the gyroscope, is also comparatively complicated
(see Appendix A and Ref. 8 for further details).

G Comments on the uncontracted grid

Although we may think of the uncontracted grid as a
mathematically convenient intermediate step in finding
the actual grid, there is more to this concept. As follows
from its definition, the uncontracted grid corresponds di-
rectly to the grid as experienced in a system that moves
with the grid and that is related to the reference frame
in question by a pure boost.

Consider a special relativistic scenario of a gyroscope
grid suspended in a torque free manner inside a satellite.
The satellite uses its jet engines to move along a smooth
simple closed curve on a plane. We want to measure from
the satellite the precession angle of the gyroscope grid
after a full orbit. If we assume that there are a couple of
suitably placed fixed stars, we can use their direction as
observed from the satellite at the initial and final point
of the orbit (which coincide), as guidelines to establish a
reference system within the satellite. For this scenario the
uncontracted grid is the physical object in which we are
interested, because it’s orientation precisely corresponds
to the orientation of the actual gyroscope grid relative
to the star calibrated reference frame of the satellite. In
particular, if the uncontracted grid has rotated a certain
angle after the full orbit, so has the actual gyroscope grid
as measured from the satellite.

III Boosting the reference frame

Now let us consider the effect of a boost of the refer-
ence frame rather than of the gyroscope grid. To make
the analogy with the discussion in Sec. II clearer, we con-
sider a real grid as a reference frame. We assume that the
reference frame initially is at rest relative to an inertial
system S, and is then boosted upward so that it is at rest
with respect to another inertial system S0, see Fig. 8. The
gyroscope grid is assumed to move with constant speed
v to the right as observed in S.

S0

v

δuref
S S′

Figure 8: Boost of the reference frame (of which the de-
picted thin grid is a small part) upward by a velocity
δuref. The velocity of the gyroscope grid is maintained.

Relative to the gyroscope system, the reference frame
initially moves to the left, and is then (due to the boost)
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given an upward velocity δuref/γ (time dilation). Because
the reference frame moves relative to the gyroscope sys-
tem, the reference frame is length contracted along the
direction of motion. However, we can imagine the refer-
ence frame without the length contraction. Analogous to
the discussion in Sec. II, the uncontracted reference frame
will rotate during the boost, as depicted in Fig. 9.

S′

Figure 9: Relative to the gyroscope system, the reference
frame (thin lines), of which we illustrate a certain part,
rotates during the boost. The reference frame is depicted
as it would appear if it was not length contracted relative
to the gyroscope system.

The net counterclockwise angle of rotation for the ref-
erence frame is found by substituting δu by δuref/γ into
Eq. (5):

δα =
δuref

γ

γ − 1

v
. (8)

Note that removing the length contraction of the un-
contracted reference frame relative to the gyroscope grid
yields the same relative configuration as removing the
length contraction of the gyroscope grid relative to the
reference frame. It follows that the upward boost of the
reference frame yields a clockwise rotation of the uncon-
tracted gyroscope grid, described by Eq. (8), relative to
the reference frame. This relative rotation is precisely
the rotation in which we are interested. Note in partic-
ular that an upward boost of the reference frame yields
a clockwise relative rotation just as an upward boost of
the gyroscope grid yields a clockwise relative rotation.

IV Three dimensions

In the two-dimensional reasoning of Secs. II and III, the
induced rotation occurred in a plane spanned by the ve-
locity vector and the vector for the velocity change. For
more general three-dimensional motion and velocity changes,
the induced rotation should still occur in a plane spanned
by these two vectors. The axis of rotation can therefore
be expressed in terms of the cross product of these two
vectors. Let us introduce δα as a vector whose direction
indicates the axis of rotation and whose magnitude cor-
responds to the angle of rotation for the uncontracted
gyroscope grid relative to the reference frame. Also, let
v be the velocity vector of the gyroscope relative to the
reference frame. The three-vector analog of Eq. (5) for a

velocity change δugyro of the gyroscope, using the identity
(γ − 1) = γ2v2/(γ + 1), can be written as

δα =
γ2

γ + 1
(δugyro × v). (9)

The corresponding vector analog of Eq. (8) for a velocity
change δuref of the reference frame is given by

δα =
γ

γ + 1
(δuref × v). (10)

Note that the cross product selects only the part of the
velocity change that is perpendicular to the relative di-
rection of motion.

Consider now an infinitesimal boost of both the gy-
roscope and of the reference frame. If we assume that we
start by boosting the gyroscope, which gives a velocity
change δugyro, this boost yields a rotation according to
Eq. (9). Subsequently boosting the reference frame by a
velocity δuref yields another rotation given by Eq. (10),
but v should be replaced by v+ δugyro. However, to first
order in δuref and δugyro this replacement does not affect
Eq. (10). Because infinitesimal rotations can be added
(to first order in the magnitude of the rotations), it then
follows that the net rotation is given by Eqs. (9) and (10)
as

δα =
γ2

γ + 1
(δugyro × v) +

γ

γ + 1
(δuref × v). (11)

Now consider a continuously accelerating reference frame
and gyroscope grid. Relative to an inertial system in
which the reference frame is momentarily at rest, we have
δugyro = agyroδt and δuref = arefδt for a time step δt. We
substitute these relations into Eq. (11) and obtain the net
angular velocity vector Ω = δα/δt for the gyroscope grid
rotation relative to the reference frame as

Ω =
γ

γ + 1
[γagyro + aref ] × v. (12)

Because we are interested in how the gyroscope grid ro-
tates relative to the accelerating reference frame, it can
be useful to express the motion relative to the reference
frame. Consider a path with local curvature radius R and
curvature direction n̂, fixed to the reference frame. In Ap-
pendix B we show that for motion along this path we have
(just like in Newtonian mechanics)

[agyro]⊥ = [aref ]⊥ + v2 n̂

R
. (13)

Here agyro and aref refer to the accelerations relative to
an inertial frame in which the reference frame is momen-
tarily at rest. The notation ⊥ denotes the part of the
acceleration that is perpendicular to the direction of mo-
tion for the gyroscope grid. Because of the cross product
in Eq. (12), the perpendicular part of the acceleration is
the only part that matters for Ω. If we substitute agyro
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from Eq. (13) into Eq. (12) and simplify the resultant
expression, we find

Ω = (γ − 1)
( n̂

R
× v

)

+ γ(aref × v). (14)

The first term on the right-hand side of Eq. (14) has the
same form as the standard Thomas precession term given
by Eq. (1). The second term corresponds to both direct
effects of rotation from the reference frame acceleration
and to the indirect effects of this acceleration, because the
acceleration of the gyroscope grid relative to an inertial
frame depends on the reference frame acceleration in this
formulation. Equation (14) matches the formally derived
Eq. (51) of Ref. 8.

V Applications

In this section we discuss applications of the derived for-
malism, Eq. (14), for gyroscope precession relative to an
accelerating reference frame.

A Motion along a horizontal line

Consider a special relativistic scenario of a train moving
along a horizontal line relative to a platform that contin-
ually accelerates upward relative to an inertial frame (see
Fig. 10).

v

Figure 10: A train with a gyroscope moving relative to an
accelerating platform observed at two successive times.

On the train a gyroscope is suspended so that there
are no torques acting on it as observed from the train. For
the special case of motion along a straight line relative to
the reference frame (the platform in this case), we have
1/R = 0. If we define g = −aref as the local acceleration
of an object dropped relative to the platform, Eq. (14)
reduces to

Ω = γ(v × g). (15)

Note that both the gyroscope and the platform reference
frame accelerate with respect to an inertial frame, and
hence we expect two precession effects. Both of these ef-
fects are included in the single term on the right-hand
side of Eq. (15). Let Ω denote the clockwise precession
rate, v the velocity to the right, and g the the downward
acceleration of dropped object relative to the platform.
Then Eq. (15) gives

Ω = γvg. (16)

Note that the uncontracted grid, whose rotation with re-
spect to the platform reference frame is given by Eq. (16),

corresponds to the grid as experienced by an observer
on the train (as discussed in Sec. II G). Thus we obtain
the angular velocity relative to the train by multiplying
the right-hand side of Eq. (16) by γ to account for time
dilation.9 Relative to the train the gyroscope thus pre-
cesses at a steady rate Ω0 (clockwise as depicted) given
by

Ω0 = γ2vg. (17)

If we assume the train velocity to be low and introduce
the proper factor of c2 to enable us to express g and v in
SI units, we have Ω0 ≈ vg/c2. For a train with a velocity
of 50m/s and a platform acceleration corresponding to
that of a dropped apple on the Earth, we obtain

Ω0 ≈
50m

s
× 9.81m

s2

(3 × 108 m
s
)2

≈ 5 × 10−15rad/s. (18)

This special relativistic scenario mimics a train moving
along a straight platform on the Earth (neglecting the
Earth’s rotation). It follows that precession effects due to
gravity are small for everyday scenarios on the Earth.

Because a torque-free gyroscope precesses relative to
the train, it follows that the train has a proper rotation,
meaning that the train rotates as observed from its own
momentary inertial rest frame. This rotation can be un-
derstood without reference to the gyroscope precession.
The heart of the matter lies (as is often the case) in si-
multaneity. Let S be an inertial system where the rail of
the continuously accelerating platform is at rest momen-
tarily (at t = 0). As observed in S, the horizontal straight
rail will first move downward (when t < 0), decelerate to
be at rest at t = 0, and then accelerate upward. Consider
now all the events along a section of the rail, when the rail
is at rest in S. Relative to the train’s momentary inertial
rest frame S′, which moves with velocity v to the right
as observed from S, the rightmost of the events along
the rail will occur first. Thus relative to S′, when the
rail at the rear end of the train has no vertical motion,
the rail at the front end (and thus the train’s front end)
will already have an upward velocity. Hence a train mov-
ing as depicted in Fig. 10 has a proper counterclockwise
rotation. By this reasoning we can verify the validity of
Eq. (17). We also understand that as observed from S′,
the rail is not straight but is curved as depicted in Fig. 11.

v

Figure 11: A sketch of the rail and the train observed
from an inertial system where the train is momentarily
at rest.
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B Following the geodesic photon

As another application we now study the precession of
a gyroscope that follows the spatial trajectory of a free
photon.10 From Eq. (B2) it follows that the trajectory of
a free photon (set v = 1 and aparticle = 0) as observed
relative to an accelerating reference frame satisfies

n̂

R
= g⊥. (19)

Here g⊥ is the part of g that is perpendicular to v (recall
that g = −aref). If we substitute the curvature given by
Eq. (19) into Eq. (14), we find that the gyroscope grid
angular velocity is given by

Ω = v × g⊥. (20)

Consider now a normalized vector t̂ directed along the
spatial direction of motion. The time derivative of t̂ rel-
ative to the reference frame satisfies dt̂/dt = vn̂/R. It
follows that t̂ rotates with an angular velocity Ω

t̂
=

v× n̂/R. If we substitute the curvature n̂/R = g⊥ given
by Eq. (19), into this expression for Ω

t̂
, we obtain

Ω
t̂

= v × g⊥. (21)

If we compare Eqs. (21) and (20), we see that t̂ rotates
with the same angular velocity as the gyroscope grid.
It follows that a gyroscope transported along a spatial
trajectory of a free photon will keep pointing along the
direction of motion if it did initially (see Fig. 12).

Figure 12: A free photon will in general follow a curved
path relative to an accelerated reference frame. A gyro-
scope transported along such a path will keep pointing
along the path if it did so initially.

If we imagine a static reference frame outside the
event horizon of a static black hole, then locally this
reference frame behaves just like an accelerated refer-
ence frame in special relativity (the equivalence princi-
ple). Hence a gyroscope outside of a black hole that fol-
lows the path of a free photon, such as a circle at the
photon radius, will not precess relative to the forward
direction of motion, as depicted in Fig. 2 in the introduc-
tion.

VI Conclusions

We have seen how the basic principles of special relativity
can be used to derive a simple but exact three-vector for-
malism of spin precession with respect to an accelerating
reference frame. The precession is given by Eq. (14) as

Ω = (γ − 1)
( n̂

R
× v

)

+ γ(aref × v), (22)

where n̂/R is the curvature of the gyroscope path rel-
ative to the accelerated reference frame. Recall that Ω

describes the rotation of a gyroscope axis as we imagine
it without length contraction along the direction of mo-
tion. In the following, knowledge of general relativity is
assumed.

VII Axisymmetric spatial geome-

tries and effective rotation vec-

tors

In a static spacetime such as that of a Schwarzschild black
hole, the global static reference frame locally corresponds
to the accelerated reference frames we have considered in
special relativity. If we integrate the infinitesimal rota-
tions from Ω given by either Eqs. (12) or (14), we can
find the net rotation of a gyroscope that is transported
along a given spatial path. Note, however, that Ω de-
scribes how the gyroscope grid rotates relative to a frame
that is parallel transported with respect to the local spa-
tial geometry associated with the reference frame. Thus
directly integrating the effects of rotation from Ω gives
the rotation relative to a frame that is parallel trans-
ported with respect to the global spatial geometry. In
Fig. 13 we illustrate a section of the spatial geometry of
an equatorial plane of a static black hole.

Figure 13: Sketch of the spatial geometry of a symme-
try plane outside a black hole. The local static reference
frame shown (the square grid) has a proper acceleration
outward. For a sufficiently small such reference frame it
works just like an accelerated reference frame in special
relativity.

Suppose then that we consider motion in the equato-
rial plane of some axisymmetric geometry. For instance,
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we might be interested in the the net rotation of a gy-
roscope (grid) after a closed orbit around the center of
symmetry (not necessarily a circular orbit). We need then
take into consideration that a parallel transported frame
will be rotated relative to its initial configuration after a
complete orbit due to the spatial geometry. To deal with
this complication we introduce a new reference frame that
rotates relative to the local coordinates, spanned by the
polar vectors r̂ and ϕ̂, in the same manner as a parallel
transported reference frame does on a plane. In other
words, if we consider a counterclockwise displacement
(δϕ,δr), then relative to the local vectors r̂ and ϕ̂, the
new reference frame should rotate δϕ clockwise. Such a
“would-be-flat” reference frame always returns to its ini-
tial configuration after a full (closed) orbit.

The line element for a two-dimensional axisymmetric
spatial geometry can be written in the form

ds2 = grrdr2 + r2dϕ2. (23)

With respect to such a geometry it is easy to show that
the angular velocity of a parallel transported frame rela-
tive to a “would-be-flat” frame is given by8

ωspace =
1

r

( 1
√

grr
− 1

)

v × r̂. (24)

Because infinitesimal rotation vectors can be added (to
lowest order), it follows from Eq. (24) and Eq. (14) that
the gyroscope grid rotation relative to the would-be-flat
frame is given by

Ωeff = (γ − 1)
( n̂

R
× v

)

− γ(g× v) +
1

r

( 1
√

grr
− 1

)

v× r̂.

(25)
Alternatively we could express Ωeff in terms of the gyro-
scope acceleration agyro relative to a local freely falling
(inertial) frame momentarily at rest relative to the static
reference frame. If we use Eq. (12) and add the rotation
due to the spatial geometry as described by Eq. (24), we
find

Ωeff =
γ2

γ + 1
(agyro×v)−

γ

γ + 1
(g×v)+

1

r

( 1
√

grr
−1

)

v×r̂.

(26)
Note that the time t implicitly entering in Eqs. (25) and
(26) through Ωeff = dα/dt is the local proper time for
a static observer. We obtain the net induced rotation
of a gyroscope in closed orbit by integrating the effects
of the infinitesimal rotations given by either Eq. (25) or
Eq. (26).

VIII Circular orbits in static sphe-

rically symmetric spacetimes

For circular motion in a spatial symmetry plane of a static
spherically symmetric spacetime, the direction of the ro-
tation vector Ωeff is constant (directed perpendicularly

to the plane of motion) in the coordinate basis of the
would-be-flat reference frame. For a counterclockwise mo-
tion the clockwise angular velocity of precession is then
(with n̂ = −r̂ and g = −gr̂) given by Eq. (25) as

Ωeff = (γ − 1)
v

R
− γgv +

v

r

( 1
√

grr
− 1

)

. (27)

It is easy to show that the curvature radius of a circle at a
certain r, for a geometry of the form of Eq. (23), is given
by R = r

√
grr. If we substitute this result into Eq. (27),

we find
Ωeff =

v

r

( γ
√

grr
− 1

)

− γgv. (28)

For a general spherically symmetric static spacetime, the
line element of a radial line can be written in the form

dτ2 = gtt(r)dt2 − grr(r)dr2. (29)

Note that grr is positive as defined here (to match the
definition in Sec. VII). From Eq. (29) it is easy to derive
the local acceleration of a freely falling particle momen-
tarily at rest. The result is

g =
1

2gtt
√

grr

∂gtt

∂r
. (30)

So here we have an explicit expression for the g which
enters the expression for Ωeff in Eq. (28). We are now
ready to consider a specific example.

A The Schwarzschild black hole

For a Schwarzschild black hole (using standard coordi-
nates and c = G = 1) we have

gtt = (1 − 2M/r) (31a)

grr = (1 − 2M/r)−1. (31b)

We substitute these two expressions into Eq. (30) and
find

g =
M

r2
√

1 − 2M/r
. (32)

If we use Eq. (32) and Eq. (31b) in Eq. (28), we obtain

Ωeff =
γv

r
√

1 − 2M/r

(

1 − 3M/r
)

−
v

r
. (33)

Equation (33) gives the precession rate as a function of r
and v. For constant velocity v we obtain the net rotation
after a full orbit by multiplying the precession rate by
the local orbital period 2πr/v. Thus we have αper-lap =
Ωeff2πr/v. If we use this result together with Eq. (33), we
obtain for counterclockwise motion the clockwise angle of
precession per lap

αper-lap

2π
= γ

(1 − 3M/r)
√

1 − 2M/r
− 1. (34)

In particular, for the photon radius (where geodesic pho-
tons can move on circles) at r = 3M , we obtain a rotation
angle of −2π per orbit, independently of the velocity. This
result is precisely what we would expect from the discus-
sion in Sec. V B. Equation (34) is equivalent to Eq. (39)
of Ref. 11.12
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B Geodesic circular motion

For a free (geodesic) gyroscope in circular motion around
a static black hole we have, according to Eq. (13), v2/R =
g where R = r

√
grr. By also using grr given by Eq. (31b)

and g given by Eq. (32), we find the γ factor for free
circular motion:

γ =

√

1 − 2M/r
√

1 − 3M/r
. (35)

Note that γ becomes infinite for r = 3M as it should. If
we use Eq. (35) in Eq. (34), we obtain

αper-lap

2π
=

√

1 − 3M/r − 1. (36)

Equation (36) is an exact expression for the net preces-
sion angle per full orbit for an ideal gyroscope in free
circular motion around a static black hole. If we assume
the gyroscope to be freely “floating” within a satellite,
analogous to the discussion of Sec. II G, Eq. (36) gives
the rotation relative to a star-calibrated reference system
of the satellite. Equation (36) matches Eq. (37) of Ref. 11.

IX Relation to other work

The standard approach to calculating gyroscope preces-
sion in special and general relativity is to solve the Fermi
equation for the spin four-vector of the gyroscope. Even
for simple applications in special relativity, such as cir-
cular motion, the resulting equations can, however, be
quite complicated (see Appendix A). In general relativ-
ity, the classical approaches to gyroscope precession are
based on approximations that assume “weak” gravity and
small velocities (see e.g Refs. 4 and 13). The derived for-
malisms can therefore not be applied accurately to, for
example, a gyroscope orbiting close to a black hole. Other
approaches, such as that in Ref. 11, are exact but specific
to circular motion. The approach of this paper, which
is exact (assuming an ideal gyroscope) and applies to
arbitrary motion relative to a static reference frame, is
strongly linked to the more formal approaches in Refs. 8
and 14.

A The Fermi approach to circular

motion

In special and general relativity the spin of a gyroscope
is represented by a four-vector Sµ. The Fermi transport
law for Sµ is given by

DSµ

Dτ
= uµ Duα

Dτ
Sα. (A1)

Here uµ is the four-velocity of the gyroscope. As a spe-
cial relativistic application we consider motion with fixed
speed v along a circle in the xy-plane with an angular
frequency ω. We assume that the spatial part of the spin

vector (Sx, Sy, Sz) is in the xy plane (so Sz = 0) and
let the gyroscope start at t = 0 on the positive x-axis.
Solving the Fermi equation is then (effectively) reduced
to solving two coupled differential equations (see Ref. 8):

dSx

dt
= γ2v2ω sin(ωt)(Sx cos(ωt) + Sy sin(ωt)) (A2a)

dSy

dt
= −γ2v2ω cos(ωt)(Sx cos(ωt) + Sy sin(ωt)). (A2b)

For the initial conditions (Sx, Sy) = (S, 0) the solutions
can be written as2

Sx = S [cos((γ − 1)ωt) + (γ − 1) sin(ωγt) sin(ωt)] (A3a)

Sy = S [sin((1− γ)ωt)− (γ − 1) sin(ωγt) cos(ωt)] . (A3b)

The first term on the right-hand side of Eq. (A3a) and
Eq. (A3b) respectively, corresponds to a rotation about
the z-axis, but there is also another superimposed rota-
tion with a time dependent amplitude. To find this so-
lution directly from the coupled Fermi equations seems
rather difficult, even for this very symmetric and simple
scenario.

B Curvature and acceleration

Suppose that we have an upward accelerating reference
frame. A test particle moves with velocity v along a path,
fixed to the reference frame, with the local curvature R
and curvature direction n̂. We would like to express the
part of the test particle’s acceleration that is perpendicu-
lar to the particle’s momentary direction of motion, rela-
tive to an inertial system in which the reference frame is
momentarily at rest. For this purpose, we consider how
the test particle will deviate from a straight line fixed to
the inertial system and directed in the momentary direc-
tion of motion of the test particle.

For the small relative velocities between the inertial
system and the reference frame that we will consider here,
we need not differentiate between the length and time
scales of the two systems. Consider a short time step δt
after the particle has passed the origin. To lowest order
with respect to δt, the perpendicular acceleration relative
to the reference frame is given by v2n̂/R. From Fig. 14
we have to lowest nonzero order in δt

δx1 =
n̂

R

v2δt2

2
(B1a)

δx2 = g⊥

δt2

2
(B1b)

δx3 = δx1 − δx2. (B1c)

Here g⊥ is the acceleration of the inertial system relative
to the reference frame (we have g⊥ = −[aref]⊥) in the
direction perpendicular to the direction of motion. We
know that δx3 = [aparticle]⊥ δt2

2
to lowest order in δt. If
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x
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z

δx1

δx2

δx3

g

Freely falling line

Figure 14: Deviations from a straight line relative to a
reference frame that accelerates in the z-direction. The
plane shown is perpendicular to the momentary direc-
tion of motion (along the dashed line), and all the three
vectors lie in this plane. The solid curving line is the par-
ticle trajectory. The thick line is the line that is fixed to
the inertial system in question, and is thus falling relative
to the reference frame.

we substitute this expression for δx3 into Eq. (B1c) and
take the infinitesimal limit, it follows that

[aparticle]⊥ = [aref]⊥ + v2 n̂

R
. (B2)

Equation (B2) gives the acceleration aparticle of a test par-
ticle, relative to an inertial system in which the reference
frame is momentarily at rest, for given path curvature
relative to the reference frame and given acceleration aref

of the reference frame.
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Abstract. I extend the reasoning of Rickard Jonsson,
Am. Journ. Phys 75 463, (2007) to include also rotating
reference frames.

1 Rotating reference frame

Suppose that the reference frame is accelerating with ac-
celeration aref and rotating (rigidly) with angular velocity
ω, relative to an inertial frame S momentarily comoving
with a certain point of the reference frame at t = 0. At
this time the gyroscope (grid) is assumed to pass the
point in question. The scenario is illustrated in Fig. 1.

S

ωa B

Figure 1: A gyroscope grid (thick lines) moving relative to
a rotating and accelerating reference frame (thin lines).
Notice that due to the rotation, the part of the reference
frame situated at the gyroscope grid at t = δt has an
extra velocity apart from that coming from the accelera-
tion of the reference frame. This Coriolis related velocity
will give an extra contribution to the relative precession,
analogous to the already discussed effect of pure accel-
erations of the reference frame, apart from the obvious
non-relativistic effects of the rotation.

Let us denote the part of the reference frame situated
at the gyroscope grid at t = δt by B. Relative to S, B
has a small velocity already at t = 0. At t = δt, it has
to lowest order the velocity aref δt + ω × vδt. To lowest
order in δt we may consider B to have been at rest in S
at t = 0, but rotated by an angle ωδt around ω̂. It is then
accelerated to a velocity aref δt + ω × vδt, hence getting
an extra turn from the Thomas precession as seen from a
system comoving with the gyroscope grid at t = δt. With
this insight one can modify Eq. 12 of Ref. 1, to include
the rotation. We just replace aref by aref+ω×v and add a

−ω term, to account for the mentioned (non-relativistic)
rotation, to find

Ω =
γ

γ + 1
([γagyro + (aref + ω × v)] × v)

−ω. (1)

By agyro we here mean the acceleration of the gyroscope
relative to the inertial frame S. In the non-rotating case
we had [agyro]⊥ = v2 n̂

R
+ [aref]⊥. Now that we have rota-

tion this is modified to [agyro]⊥ = v2 n̂

R
+[aref]⊥ +2ω×v.

This is a simple Coriolis effect that is easy to derive anal-
ogous to the proof in Appendix B of Ref. 1. Using this in
Eq. (1) yields

Ω =
γ

γ + 1

([

γv2 n̂

R
+ aref(γ + 1)

+(2γ + 1)ω × v

]

× v

)

− ω. (2)

So here is the precession rate of the gyroscope grid (in the
stopped sense) relative to an accelerating and rotating
reference frame. Comparing Eq. (1) and Eq. (2) with the
more formally derived results of Ref. 2 (Eqs. 50 and 51),
we find a perfect match.

To apply this formalism to for instance rotating black
holes, we must take the spatial geometry into account
analogous to the case for static black holes, see Ref. 2.

References

[1] R. Jonsson, “Gyroscope precession in special and
general relativity from basic principles,” Am.
Journ. Phys. 75, 463 (2007)

[2] R. Jonsson, “A covariant formalism of spin preces-
sion with respect to a reference congruence,” Class.
Quantum Grav. 23, 37-59 (2006).

1


