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Abstract. We derive an effectively three-dimensional relativistic spin precession for-

malism. The formalism is applicable to any spacetime where an arbitrary timelike

reference congruence of worldlines is specified. We employ what we call a stopped spin

vector which is the spin vector that we would get if we momentarily make a pure

boost of the spin vector to stop it relative to the congruence. Starting from the Fermi

transport equation for the standard spin vector we derive a corresponding transport

equation for the stopped spin vector. Employing a spacetime transport equation for

a vector along a worldline, corresponding to spatial parallel transport with respect to

the congruence, we can write down a precession formula for a gyroscope relative to the

local spatial geometry defined by the congruence. This general approach has already

been pursued by Jantzen et. al. (see e.g. Jantzen, Carini and Bini 1997 Ann. Phys.

215 1), but the algebraic form of our respective expressions differ. We are also apply-

ing the formalism to a novel type of spatial parallel transport introduced in Jonsson

(2006 Class. Quantum Grav. 23 1), as well as verifying the validity of the intuitive

approach of a forthcoming paper (Jonsson 2007 Am. Journ. Phys. 75 463) where

gyroscope precession is explained entirely as a double Thomas type of effect. We also

present the resulting formalism in explicit three-dimensional form (using the boldface

vector notation), and give examples of applications.

PACS numbers: 04.20.-q, 95.30.Sf

1. Introduction

In special and general relativity the spin of a gyroscope is represented by a four-vector

Sµ. Assuming that we move the gyroscope without applying any torque to it (in a

system comoving with the gyroscope), the spin vector will obey the Fermi transport

equation

DSµ

Dτ
= uµDuα

Dτ
Sα. (1)
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Here uµ is the four-velocity of the gyroscope. For a trajectory in a given spacetime,

and a spin vector specified at some point along this trajectory, we can integrate (1)

to find the spin at any point along the trajectory. The Fermi transport equation is

however deceivingly simple since we have not inserted explicitly the affine connection

coming from the covariant differentiation. Also, even when we have a flat spacetime

and inertial coordinates (so that the affine connection vanishes) the equation is more

complex than you might think. As an example we consider motion with fixed speed v

along a circle in the xy-plane, with an angular frequency ω. Letting the groscope start

at t = 0 at the positive x-axis, we get a set of coupled differential equations

dSx

dt
= γ2v2ω sin(ωt) (Sx cos(ωt) + Sy sin(ωt)) (2)

dSy

dt
= − γ2v2ω cos(ωt) (Sx cos(ωt) + Sy sin(ωt)) (3)

dSz

dt
= 0, S0 = v · S (4)

Here v = dx
dt

and S is the spatial part of Sµ. For initial conditions (Sx, Sy, Sz, S0) =

(S, 0, 0, 0) the solutions (see [1] p. 175-176) can be written as

Sx = S (cos[(γ − 1)ωt] + (γ − 1) sin[ωγt] sin[ωt]) (5)

Sy = S (sin[(1 − γ)ωt] − (γ − 1) sin[ωγt] cos[ωt]) (6)

Sz = 0, S0 = −SRωγ sin[ωγt] (7)

Looking at Sx and Sy, we note that (written in the particular form above) the first

terms in respective expression corresponds to a rotation around the z-axis, but then

there is also another superimposed rotation with time dependent amplitude. To find this

solution directly from the coupled differential equations that are the Fermi equations,

seems at least at first sight quite difficult, even for this very symmetric and simple

scenario.

To get a simpler formalism we may consider, not the spin vector Sµ itself, but

the spin vector we would get if we momentarily would stop the gyroscope (relative to

a certain inertial frame) by a pure boost (i.e. a non-rotating boost). This object we

will call the stopped spin vector. While being a four-vector it is effectively a three-

dimensional object (having zero time component in the inertial frame in question) and

we will show that the spatial part of this object undergoes pure rotation with a constant

rate for the example of motion along a circle in special relativity.

Knowing that there is a simple algebraic relation between the stopped and the

standard spin vector, the stopped spin vector can be used as an intermediate step to

easily find the standard spin vector. There is however also a direct physical meaning to

the stopped spin vector, apart from being the spin vector we would get if we stopped the

gyroscope. The stopped spin vector directly gives the spin as perceived in a comoving

system, see section 4.10 for further discussion on this.

In this article we will also consider more general reference frames than inertial ones.

For instance we will consider a rotating and accelerating reference frame. This allows
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us to apply the formalism, via the equivalence principle, to describe in a simple three-

dimensional manner how a gyroscope orbiting for instance a rotating black hole will

precess relative to the stationary observers. In figure 1 we illustrate how a gyroscope

spin vector precesses relative to a vector parallel transported with respect to the spatial

geometry.

AB

Figure 1. A schematic illustration of how an orbiting gyroscope will precess relative

to the spatial geometry of a black hole. The full drawn arrow is the stopped spin

vector (stopped with respect to the stationary reference observers) of the gyroscope

at two different points along the orbit. The dashed arrow is a vector coinciding with

the gyroscope spin vector at A and then parallel transported to B with respect to the

spatial geometry. For an intuitive explanation of why the gyroscope precesses relative

to the spatial geometry even though there are no torques acting on it, see [2].

Given a reference congruence of timelike worldlines, we first derive a general

spacetime transport equation for the stopped spin vector (stopped relative to the

congruence in question). We then consider a spacetime equation corresponding to spatial

parallel transport with respect to the spatial geometry defined by the congruence. For

the case of a rigid congruence, we easily derive such a transport law. Considering a

shearing congruence we use the formalism derived in [3].

Having both the transport equation for the stopped spin vector and the equation

for parallel transport, we can put them together and thus get an equation for how fast

the stopped spin vector precesses relative to the local spatial geometry connected to the

reference congruence. As is the case for the inertial congruence, we will see that the

precession corresponds to a simple law of three-rotation.

The general scheme as outlined here has already been pursued by Jantzen et. al.

(see [4]), although the angle of approach and the algebraic formalisms are different. The

explicit use of the three-dimensional formalism of this paper also appears novel.

This article is complementary to a companion paper [2], where the formalism of

relativistic spin precession in three-dimensional language is derived in a very intuitive

manner. This paper verifies, through a more formal derivation, the result of [2] for the

particular case of a rigid congruence as assumed in [2].

2. The stopped spin vector

Let us denote the local four-velocity of our reference congruence by ηµ. We introduce

a stopped spin vector S̄µ as the spin vector that we get if we make a pure boost of the
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spin vector such that it is at rest with respect to the local congruence line. In figure 2

we illustrate in 2+1 dimensions how the two spin vectors are related to each other.

ηµ uµ

Sµ

S̄µ

Figure 2. A 2+1 illustration of the relation between the spin vector Sµ and the

stopped spin vector S̄µ. Through the stopping, the tip of the spin vector can in two

dimensions be seen as following the hyperbola connected to the Lorentz transformation

down to the local slice. Notice that the stopped spin vector is not in general simply

the spatial (projected) part of the standard spin vector (the thin dotted arrow).

It follows readily from the Lorentz transformation that we get the stopped vector

by removing the ηµ-part of Sµ, and shortening the part parallel to the spatial direction

of motion by a γ-factor. Note that the resulting stopped vector is not in general parallel

to the spatial part of Sµ. Letting tµ be a normalized vector orthogonal to ηµ in the

direction of motion, we can express the stopped spin vector as

S̄µ =

[

δµ
α + ηµηα +

(

1

γ
− 1

)

tµtα

]

Sα. (8)

Here we have adopted the spatial sign convention (−, +, +, +) as we will throughout

the article. Knowing a little about Thomas precession we may guess that for the simple

case of motion along a circle in an inertial frame as discussed earlier, there is a simple

law of three-dimensional rotation for this object. Indeed in the following discussion we

will show this, and at the same time consider the effects of rotation coming from having

non-inertial reference frames (connected to ηµ).

We also need an explicit expression for the standard spin vector in terms of the

stopped spin-vector S̄µ. The relationship between the two vectors follows readily from

the Lorentz-transformation:

Sµ = S̄αKµ
α (9)

Kµ
α = [δµ

α + γvηµtα + (γ − 1)tµtα] . (10)

This we may now insert into the Fermi transport equation to derive an expression for

the stopped spin vector.
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3. Covariant derivation of the transport equation for the stopped

spin-vector

In this section we consider gyroscope transport relative to an arbitrary reference

congruence ηµ. For a spin vector Sµ transported along a worldline of four-velocity

uµ, we have the Fermi transport law

DSµ

Dτ
= uµSρ Duρ

Dτ
. (11)

Using (9) in (11) readily yields

DS̄α

Dτ
Kµ

α = S̄α

[

uµKρ
α

Duρ

Dτ
− DKµ

α

Dτ

]

. (12)

We need now the inverse of Kµ
α to get an explicit transport equation for the stopped

spin vector. Through a general ansatz1, we find

K−1ν
µ = δν

µ +

(

1

γ
− 1

)

tνtµ − vηνtµ. (13)

That this is indeed the inverse of Kµ
α is easy to verify2. So we have

DS̄ν

Dτ
= S̄α

[

uµKρ
α

Duρ

Dτ
− DKµ

α

Dτ

]

K−1ν
µ. (14)

Here we have the desired expression. In Appendix A we expand and simplify this to

find
DS̄µ

Dτ
=

γv

γ + 1
S̄α

(

tµ
[

D

Dτ
(uα + ηα)

]

⊥
− tα

[
D

Dτ
(uµ + ηµ)

]

⊥

)

+ ηµS̄α Dηα

Dτ
. (15)

By the perpendicular sign ⊥ we here mean that we should select only the part orthogonal

to both tµ and ηµ. Note that D
Dτ

means covariant differentiation along the gyroscope

worldline. Equation (15) then tells us how the stopped spin vector deviates from a

parallel transported vector relative to a freely falling system. In fact we notice from

the antisymmetric form of (15) that (excepting the ηµ term) it corresponds to a spatial

rotation (see section 4.2 for a more detailed argument). That seems very reasonable

since it insures that the norm of the stopped spin vector will be constant (consider the

rotation with respect to a freely falling system locally comoving with the congruence).

We also see that only if uµ + ηµ changes along the gyroscope worldline, with respect to

a freely falling system, do we get a net rotation relative to this freely falling system.

Introducing the wedge product defined by aα ∧ bβ ≡ aαbβ − bαaβ and the projection

operator P µ
α = δµ

α + ηµηα, we can put (15) in a more compact form

P µ
α

DS̄α

Dτ
=

γv

γ + 1
S̄α

(

tµ ∧
[

D

Dτ
(uα + ηα)

]

⊥

)

. (16)

1We have K−1ν
ρK

ρ
α = δν

α. The ansatz is of the form K−1ν
α = δν

α+atµtα+btµηα+cηµtα+dηµηα.
2In defining Kµ

α we are free to add terms containing ηα, since these anyway die when multiplied

by S̄α. If we instead would have defined Kµ
α = δµ

α + 1

γ+1
(uµ + ηµ)(uα − ηα) we would get the inverse

K−1µ
α = δµ

α + 1

γ+1
(uµ +ηµ)(ηα−uα) . Here the perfect symmetry in Sµ, ηµ and S̄µ, uµ is transparent.

There however does not appear to be any particular advantages of this gauge.
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Incidentally we may note that, as regards tµ-components within the bracketed

expression, we do not need the ⊥ sign. Any tµ components within the bracketed

expressions will cancel due to the anti-symmetrization as is easy to see. We however

keep the ⊥ sign to indicate orthogonality to ηµ. The simple form of (16) appears to be

novel.

4. Application to flat spacetime, and inertial congruences

While we have yet to put the formalism in its final form, some applications and discussion

may be useful already at this point for the simple case of an inertial reference congruence

in special relativity.

4.1. Employing the spatial curvature of the gyroscope trajectory

As a particular example, consider a flat spacetime with an inertial congruence. For this

case it is not hard to show, see e.g [3], that the spatial curvature of a trajectory depends

on the four-acceleration as
[
Duα

Dτ

]

⊥
= γ2v2nα

R
. (17)

Here R is the spatial curvature3 and nµ is a normalized four-vector, orthogonal to the

inertial congruence ηµ, pointing in the direction of spatial curvature. Using this in (16)

we get

P µ
α

DS̄α

Dτ
= γv(γ − 1)S̄α

(

tµ ∧ nα

R

)

. (18)

As we will see in the following section, this differential equation corresponds to a three-

dimensional rotation.

4.2. Three-dimensional formalism, for flat spacetime and an inertial congruence

Choosing inertial coordinates adapted to the inertial congruence in question so that

S̄µ = (0, S̄), tµ = (0, t̂) and nµ = (0, n̂) we get from (18)

dS̄

dτ
= γv(γ − 1)

[

t̂(S̄ · n̂

R
) − n̂

R
(S̄ · t̂)

]

. (19)

The expression within the brackets is a vector triple product and we may write it as a

double cross product. Letting v = vt̂ we get

dS̄

dτ
= γ(γ − 1)

(

n̂

R
× v

)

× S̄. (20)

3As is illustrated in [3] there are plenty of ways to define spatial curvature measures in general, but

for an inertial congruence most of these coincide with the standard projected curvature that we here

assume.
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Rather than using τ we could use local time τ0 (the time as experienced by observers

at rest relative to the inertial congruence in question) in which case we get a gamma

factor less on the right hand side.

dS̄

dτ0
= (γ − 1)

(

n̂

R
× v

)

× S̄. (21)

This is the famous Thomas precession, in stopped spin vector three-formalism.

Introducing Ω as the precession vector, around which the stopped spin vector rotates,

we can alternatively write (21) as

dS̄

dτ0
= Ω × S̄ (22)

Ω = (γ − 1)

(

n̂

R
× v

)

. (23)

Looking at (22) component-wise, it is a set of coupled differential equations, just like

the standard Fermi equations. Unlike the Fermi-equations however, the new equations

correspond to a simple law of rotation (precession).

4.3. The circular motion revisited

As a specific example we may consider, as in the introduction, the precession of a

gyroscope transported at constant speed v around a circle of radius R in the z = 0 plane.

Assuming a motion with a clockwise angular velocity ω = v/R, the counterclockwise

angular velocity Ω for the precession of the stopped spin vector is then according to (23)

given by

Ω = (γ − 1)ω. (24)

Consider then for instance the net precession after one lap. The local time per lap is

simply 2π/ω and hence the net precession angle (in radians) around the plane normal

is given by 2π(γ − 1). If the circular motion is counter-clockwise, the precession is

clockwise and vise versa.

4.4. Re-deriving the solution for the standard spin vector

We can also trivially find the solution for the standard (projected) spin vector for the case

of circular motion with constant speed with initial conditions as listed in the example

in the introduction. We know that the standard (projected) spin vector is related to

the stopped spin vector through a lengthening of the stopped spin vector in the forward

direction of motion t̂ by a γ-factor. We have then

S = S̄ + (γ − 1)(S̄ · t̂)̂t. (25)

Using the notation of the previous subsection we have then trivially for the case at hand

S̄ = S cos(Ωt)x̂ − S sin(Ωt)ŷ (26)

t̂ = − sin(ωt)x̂ + cos(ωt)ŷ. (27)
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Using these expressions in (25) we immediately get the desired solution. Using

elementary rules for manipulating the trigonometric functions we can write it in the

form of (5)-(7). If we are interested also in S0, it is given by the orthogonality of the

standard spin vector and the four-velocity as S0 = S ·v. Note that by use of the stopped

spin vector formalism there is effectively no differential equation solving involved for this

simple case.

4.5. A special relativistic theorem of spin precession for planar constant velocity motion

For motion in a circle with constant velocity, the Fermi equation can be solved without

use of the stopped spin vector formalism, although the solution is a bit complicated.

What about if we consider motion with constant velocity along some other curve, say

a part of a parabola or some more irregular curve? Then the Fermi equation would

likely appear to be very complicated to solve analytically in the general case. Using the

method with the stopped spin vector the solution can however trivially be found for

arbitrary curves. First let us state a small theorem that we will then easily prove.

The stopped spin vector of a gyroscope transported with constant speed v along

a smooth curve in a spatial plane in a flat spacetime will rotate a net clockwise

angle around the normal of the plane given by ∆αprecess = (γ−1)∆αcurve where

∆αcurve is the net counterclockwise turning angle of the tangent direction of the

curve.

Note that the parameter ∆αcurve may be larger than 2π. For a simple closed curve (one

that is not crossing itself), assuming the gyroscope to be transported once around the

curve, we have ∆αcurve = 2π.

This theorem is easily proven by dividing an arbitrary smooth curve into

infinitesimal segments within which we can consider the local curvature radius to

be constant. Letting ω denote the counter-clockwise angular velocity of the forward

direction of motion t̂ (so ω = dαcurve/dt), we have according to (24) the clockwise

angular velocity as Ω = (γ − 1)ω. Thus the net angles of the gyroscope precession and

the turning of the forward direction of the curve, along the segment in question, are

related through dαprecess = (γ − 1)dαcurve. Adding up the precession contributions from

all the segments of the curve we get

∆αprecess = (γ − 1)∆αcurve. (28)

Thus the theorem is proven. Note that while the motion is assumed to be in a plane,

the spin vector may point off the plane.

4.6. Some consequences of the theorem

We can draw a conclusion from the above proven theorem (also knowing that there is

a simple algebraic relation between the stopped and the standard spin-vector) that can

be expressed in terms of the standard spin vector, without reference to the stopped
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spin vector. Consider then a smooth simple closed curve and let a certain point along

this curve be the initial position for the gyroscope. For given initial spin vector, initial

direction of motion4 and constant speed v, the final spin vector (after one lap around

the loop) is independent of the shape of the loop as illustrated in figure 3.

Initial projected spin vector

Final projected spin vector

Figure 3. Illustrating that for a fixed initial direction of motion, fixed initial spin

vector, and fixed constant speed v – the final spin vector after one lap around any

simple smooth closed curve is independent of the shape of the curve.

But of course, the theorem is stronger than this. Given an arbitrary, not necessarily

closed but smooth curve along which we transport the gyroscope with constant velocity,

we can trivially find the standard spin vector at any point along the curve. We take the

spatial part of the initial spin vector and shorten the part parallel to the direction of

motion by a γ-factor to form the initial stopped spin vector. For any given curve x(λ) we

then calculate the initial direction of the curve together with the direction of the curve

at the point in question. Then, modulo a winding number times 2π5, we can trivially

find the corresponding ∆αcurve and thus through (28) the corresponding stopped spin

vector at the point in question. Lengthening the parallel part of the stopped spin vector

by a factor γ, we get the spatial part of the standard spin vector at the point in question.

If we are interested in the zeroth component of the standard spin vector it is given by

S0 = S · v. Thus solving a possibly very complicated differential equation is reduced to

performing a few algebraic steps6.

4.7. More complicated motion

For motion in a plane where the velocity is not constant, the procedure is analogous to

that described in section 4.6 except that we need to integrate (a single integral which

may or may not be complicated to solve analytically) to find dαprecess. For the most

general motion, not necessarily confined to a plane and with a speed that may vary, it

4One cannot in general keep the standard (unlike the stopped) spin vector fixed while altering the

initial direction of motion of the gyroscope since the standard spin vector must be orthogonal to the

gyroscope four-velocity.
5The only non-trivial part of calculating the turning angle lies in finding out the number of turns

taken by the curve since for a curve x(λ) we only get the turning angle ∆αcurve up to a term 2πn,

where n is an integer, from the local quantity dx
dλ

6Again modulo the winding number mentioned earlier. For many cases, like for instance for a

parabola, this however presents no problem at all.
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is however not just a matter of ordinary integration7. Given an arbitrary motion x(τ0)

along a smooth curve we can however solve a differential equation, given by (22) and

(23), for S̄. Likely this differential equation will be simpler to solve than the Fermi

equation.

4.8. A comment on the relation between the intrinsic angular momentum, the projected

spin vector, the gyroscope axis and the stopped spin vector

To gain further intuition on the meaning of the stopped spin vector it may be useful to

explore how it is related to other vectors of physical interest connected to the gyroscope

spin. In particular we may consider the gyroscope intrinsic angular momentum, and

the momentary direction of the gyroscope axis as perceived in the reference system in

question (where the observers are integral curves of ηµ).

Consider then a gyroscope moving along a straight line in the xy-plane in special

relativity (using inertial coordinates) with constant speed. The gyroscope axis is

assumed to lie in the plane of motion and to be tilted somewhere between the forward

and the sideways direction. In 2+1 dimensions we can easily visualize the worldsheet of

the gyroscope central axis as well as various vectors of interest, see figure 4.

t

y

x

The gyroscope axis direction
The stopped spin vector

The projected spin vector

The standard spin vector

The worldsheet of the gyroscope axis

Figure 4. A sketch in 2+1 dimensions of vectors related to a spinning gyroscope.

We note that there are (at least) three different spatial directions of relevance

for the gyroscope. It is easy to realize (length contraction) that the direction of the

gyroscope axis is simply related to the direction of the stopped spin vector through a

7One could for instance represent a finite precession (rotation) by a vector whose direction

determines the axis of rotation and whose norm determines the angle (in radians) of the precession.

It is however easy to realize that for a a finite such rotation (like the net rotation after some finite

stretch along a trajectory) followed by an infinitesimal rotation around some other axis – one cannot

in general simply add the two corresponding rotation vectors (to first order) to form a new rotation

vector. Of course there are examples of non-planar motion, like motion along a helix for instance, where

the precession vector remains in the same direction for which case it is a simple matter of integration

after all to find the net rotation of the stopped spin vector.
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gamma factor. Given any of these directions the other two can thus easily be found.

Furthermore one can show, at least for an idealized scenario as considered in Appendix

B, that the the intrinsic angular momentum, that we will denote SL, is in fact given by

S/γ. The various vectors involved are illustrated in figure 5.

1
γ

1

γ

t̂

X

S̄

S

SL

Figure 5. The three different directions in question are simply related through a

stretching by a gamma factor in the direction of motion. In this illustration a gamma

factor of 2 was assumed, with motion in the upwards direction (̂t). Note that the

depicted norm of the gyroscope axis vector X is arbitrary.

4.9. Four vectors, four differential equations

Consider a spatial vector X that connects the base of the gyroscope to the tip of the

gyroscope, as perceived in the reference system connected to ηµ. We understand that

this vector evolves according to a simple rule of rotation given by (21) modulated by a

contraction by a factor of γ in the direction of motion. It is a short exercise to show

that this means that X in fact obeys a rather compact differential equation

dX

dτ0
= −γ2 dv

dτ0
[X · v] . (29)

We can perform a corresponding analysis for the projected spin vector to find8

dS

dτ0

= γ2v

[

S · dv

dτ0

]

. (30)

The equations for the stopped spin vector can be written in the form

dS̄

dτ0

=
γ − 1

v2

(

dv

dτ0

× v

)

× S̄. (31)

From (30), letting S = γSL, we readily find

dSL

dτ0

= γ2v

[

SL · dv

dτ0

]

− γ2v
dv

dt
SL. (32)

8This also follows readily from the standard Fermi equations for the case of inertial coordinates in

special relativity.
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Comparing the four differential equations we see that they are all quite compact,

although the equation for the stopped spin vector, corresponding to a pure rotation,

is more likely to be simple to solve (as we have seen for the example of motion on a

circle).

4.10. A comment on the meaning and purpose of the stopped spin vector

One might argue that the object of physical interest is the intrinsic (spin) angular

momentum of the gyroscope which is given by S/γ, or perhaps the observed direction of

the gyroscope central axis. From this point of view the stopped spin vector is in a sense

a means to an end. By using the stopped spin vector as an intermediate step we can

find the solutions to otherwise quite complicated differential equations for the objects

of physical interest. From a mathematical point of view this is certainly sufficient to

motivate the use of the stopped spin vector. There is however more to the stopped spin

vector than this. In particular we note that the stopped spin vector directly gives us

the spin as perceived in a comoving system. For instance, if the stopped spin vector

is at a 45◦ angle with respect to the forward direction – so it will be with respect to

a system comoving with the gyroscope9. This is contrary to the standard spin vector

which only gives the spin direction with respect to the comoving system after a Lorentz

transformation. Consider the following example. A gyroscope is suspended inside a

satellite such that no torque is exerted on the gyroscope as seen from the satellite. The

satellite is assumed to be orbiting along some predetermined smooth simple closed curve,

on a plane in special relativity10, using it’s jet engines to stay on the path. Suppose

then that we wish to measure, from the satellite, the precession angle of the gyroscope

(as predicted by relativity) after a full orbit (or maybe several full orbits). We note that

the direction of the gyroscope relative to the satellite itself is not a good measure11.

Assuming that we have a couple of fixed stars, we can however use the direction of

these stars (as perceived from the satellite) as guidelines to set up a reference system

within the satellite12 For this scenario the stopped spin vector is exactly the physical

object that we are interested in. It exactly represents the gyroscope direction relative

to the star-calibrated reference system of the satellite. Thus if the stopped spin vector

turns a certain angle, that is precisely the turning angle of the gyroscope relative to the

9If the stopped spin vector has certain components with respect to a set of base vectors adapted to

the reference congruence in question, then those components precisely corresponds to the components of

the standard spin vector with respect to a boosted version (a pure boost to comove with the gyroscope)

of the base vectors just mentioned. This viewpoint is mentioned in [1] p. 1117, although they do not

consider general spacetimes and velocities.
10The general argument works also for gyroscopes orbiting the earth in a general relativistic

treatment. More on this in section 10.
11The satellite may have had an initial rotation from the start or the jet-engines may give it one.

Also, even if it would have zero proper rotation then the gyroscope would keep its direction relative to

the satellite and thus would not turn at all relative to the satellite.
12We also assume that the satellite has some way of knowing when it is at its initial position (so it

knows when to calibrate its coordinates with respect to the stars).
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star-calibrated reference system of the satellite.

While we are here focusing on spinning gyroscopes, it should also be noted that the

formalism of the stopped spin vector is immediately applicable to describe the resulting

rotation of any object which has zero proper (comoving) rotation.

In conclusion, the stopped spin vector may be used as an intermediate step to

simplify the calculation of the evolution of the intrinsic angular momentum (spin) of a

gyroscope, or the perceived direction of the gyroscope axis. The stopped spin vector is

however also of direct physical importance since it gives us the spin as perceived in a

comoving system.

So far we have only given examples that apply to flat spacetime, and inertial

reference frames. As we will see in the following sections the stopped spin vector can

be just as useful also for curved spacetimes and non-inertial reference frames.

5. Spatial parallel transport

The transport equation (16) tells us how the stopped spin vector deviates from a vector

that is parallel transported with respect to the spacetime geometry. This by itself is

however not really what we are after if the reference congruence is non-inertial. To get

a truly three-dimensional formalism, we in stead want an expression telling us how fast

the stopped spin vector deviates (rotates) from a vector that is parallel transported with

respect to the spatial geometry determined by the congruence. As is demonstrated in

[4] and in [3], it is possible derive a spacetime transport law corresponding to a spatial

parallel transport. For the simple, and perhaps most useful, case of a rigid congruence13

the issue is sufficiently simple that we will briefly review it in the coming subsection.

5.1. Rigid congruence

Suppose then that we have a rigid congruence with nonzero acceleration aµ, nonzero

rotation tensor ωµ
ν but with vanishing expansion-shear tensor θµ

ν
14.

In figure 6 we show an illustration of the spacetime transport of a vector orthogonal

to the congruence.

It is easy to show that in the coordinates of a freely falling system (t, xk), locally

comoving with the congruence, the velocity of the congruence points (assuming vanishing

θµ
ν) is to first order given by

vk = ωk
jx

j + akt. (33)

Knowing that the velocity of the congruence is zero to lowest order, relative to the

inertial system in question, we need not worry about length contraction and such. It

13The congruence may rotate and accelerate but it may not shear or expand.
14The kinematical invariants of the congruence are defined as (see [1] p. 566): The expansion scalar

θ = ∇αηα, the acceleration vector aµ = ηα∇αηµ, the shear tensor σµν = 1

2
(∇ρηµP ρ

ν + ∇ρηνP ρ
µ) −

1

3
θPµν and the rotation tensor ωµν = 1

2
(P ρ

ν∇ρηµ − P ρ
µ∇ρην). Furthermore we employ what we

denote the expansion-shear tensor θµν = 1

2
(P ρ

ν∇ρηµ + P ρ
µ∇ρην).
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Figure 6. A 2+1 illustration of transporting a spatial vector along a worldline, seen

from freely falling coordinates locally comoving with the congruence. As the reference

coordinates rotate due to ωµ
α, so should the vector in order for it to be proper spatially

transported.

is then easy to realize that the proper spacetime transport law of a spatial vector kµ

corresponding to standard spatial parallel transport is

Dkµ

Dτ
= γωµ

αkα + bηµ. (34)

Here b can easily be determined from the orthogonality of kµ and ηµ15. Here we have

then a spacetime transport equation corresponding to spatial parallel transport, for the

case of a non-shearing (non-expanding) congruence.

5.2. Including shear and expansion

For a more complicated congruence that is shearing and expanding, it is not quite so

obvious how to define the spatial parallel transport. Indeed as discussed in e.g [4] and

[3], there are several ways of doing this. We will here follow the approach of [3], and

consider two different such parallel transports. These transports are connected to two

different ways of defining a spatial curvature for a test particle worldline, with respect

to the congruence

Projected:
1

γ2

[
Duµ

Dτ

]

⊥
= [aµ]⊥ + 2v(ωµ

αtα + [θµ
αtα]⊥) + v2 nµ

ps

Rps
(35)

New:
1

γ2

[
Duµ

Dτ

]

⊥
= [aµ]⊥ + 2vωµ

αtα + v2 nµ
ns

Rns

. (36)

Here Rps and nµ
ps are the curvature and the curvature direction that we get if we

project the the spacetime trajectory down along the congruence onto a local timeslice

(orthogonal to the congruence at the point in question). The suffix ’ps’ stands for

’Projected Straight’. The curvature Rns and the curvature direction nµ
ns are defined

15From the orthogonality kµηµ = 0 follows (differentiate D
Dτ

along the gyroscope worldline) that
Dkµ

Dτ
ηµ = −kµ Dηµ

Dτ
. Contracting both sides of (34) by ηµ gives b = kµ Dηµ

Dτ
.
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with respect to deviations from a certain (new) notion of a spatially straight line. The

latter is defined as a line that with respect to variations in the projected curvature,

leaves the integrated spatial distance (as defined by the congruence) unaltered (to first

order in the variation). As it turns out, a straight line with respect to this definition,

has in general a non-zero projected curvature when the congruence is shearing. The

suffix ’ns’ stands for ’New-Straight’. This particular curvature is connected to Fermat’s

principle, and optical geometry [3, 5].

For brevity we let the suffix ’s’ denote either ’ps’, or ’ns’. Introducing Cps = 1,

Cns = 0 we can then express both curvatures jointly as

1

γ2

[
Duµ

Dτ

]

⊥
= [aµ]⊥ + 2v(ωµ

αtα + Cs[θ
µ

αtα]⊥) + v2 nµ
s

Rs
. (37)

From these two curvature measures one can introduce corresponding equations for

spatial parallel transports [3]. A joint expression for the parallel transport of a vector

kµ is given by

Dkµ

Dτ
= γkαωµ

α + γ(2Cs − 1)kα(θµ
βt

β ∧ tα) + ηµkα Dηα

Dτ
. (38)

Here Dηα

Dτ
is the covariant derivative along the (gyroscope) worldline in question. Notice

that for vanishing shear expansion tensor, the two transports both correspond to (34).

Having defined two types of parallel transport according to (38), we can define

corresponding covariant differentiations along a curve as

Dsk
µ

Dsτ
=

Dkµ

Dτ
− γkα

(

ωµ
α + (2Cs − 1)(θµ

βt
β ∧ tα)

)

− ηµkα Dηα

Dτ
. (39)

These derivatives then tells us how fast a vector deviates from a corresponding parallel

transported vector (momentarily parallel to the vector in question). Substituting

kµ → S̄µ and using (16) we get the equations for how fast the stopped spin vector

precesses relative to a spatially parallel transported vector (of the two types). First we

however rewrite (16).

6. Rewriting the stopped spin vector transport equation

We saw in the preceding section how the kinematical invariants of the congruence entered

naturally in the definition of spatial parallel transport. We can also expand (Dηα

Dτ
+ Duα

Dτ
),

in the transport equation (16) for the stopped spin vector, in terms of the kinematical

invariants of the congruence. First of all we have

Dηα

Dτ
= uρ∇ρηα = γ(ηρ + vtρ)∇ρηα. (40)

Also we know that (see e.g [1] p. 566)

∇ρηα = ωαρ + θαρ − aαηρ. (41)

Using (40), we have then

Dηα

Dτ
= γv (ωαρt

ρ + θαρt
ρ) + γaα. (42)
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Using this together with (37) in (16), also adding the proper ηµ-term enabling the

removal of the projection operator in (16), we readily find

DS̄µ

Dτ
=

γv

γ + 1
S̄αtµ ∧

[

γ(γ + 1)aα + γv(2γ + 1)ωαρt
ρ

+ γv(2γCs + 1)θαρt
ρ + γ2v2nsα

Rs

]

+ ηµS̄αDηα

Dτ
. (43)

Notice that we have omitted the perpendicular signs (⊥) on θαρt
ρ and aα since these

objects are already orthogonal to ηµ and any tµ components die due to the anti-

symmetrization.

7. The rotation of the stopped spin vector relative to a parallel transported

vector

Now it is time to put together the results of the preceding two sections. What we want

is the net rotation of the stopped spin vector relative to a spatially parallel transported

vector. Using (43) and (39) (setting kα = S̄α), we then readily find

DsS̄
µ

Dsτ
= S̄α

[

γ2v(tµ ∧ aα) + (γ − 1)(2γ + 1)(tµ ∧ ωαρt
ρ) − γωµ

α

+ (2γ2Cs − 1)(tµ ∧ θαρt
ρ) + γv(γ − 1)

(

tµ ∧ nsα

Rs

) ]

. (44)

Here Cps = 1 and Cns = 0. So this gives us how fast a gyroscope stopped

spin vector deviates from a corresponding (spatially) parallel transported vector. In

particular considering the expression in a freely falling system locally comoving with

the congruence, we understand that the expression within the brackets on the right

hand side is simply the effective rotation tensor relative to the spatial geometry.

It could be practical with an expression corresponding to (44) but where the proper

four-acceleration is explicit. Using (16), (39) and (42) we readily find

DsS̄
µ

Dsτ
=

γv

γ+1
S̄αtµ ∧

[[
Duα

Dτ

]

⊥
+γaα +γvωαρt

ρ +(2γCs−1)
γ+1

γv
θαρt

ρ

]

− γωµ
αS̄α. (45)

Notice that the expression for the four-acceleration here (naturally) is independent of

what curvature measure that we use. Still (45) depends on what curvature measure we

are using (manifesting itself in the occurrence of Cs) assuming non-zero θαρt
ρ, since the

transport laws for the two types of spatial parallel transport differs.

8. Three-dimensional formalism, assuming rigid congruence

We can rewrite (44) and (45) as purely three-dimensional equations. For any specific

global labeling of the congruence lines (i.e. any specific set of spatial coordinates adapted

to the congruence) we can locally choose a time slice orthogonal to the congruence so
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that S̄µ = (0, S̄). This then uniquely defines the three-vector S̄ at any point along the

gyroscope trajectory. Analogous to what we did in going from (18) to (20), for a set of

vectors S̄µ, tµ and kµ orthogonal to the congruence, we let S̄αtµ ∧ kα →
(

k × t̂
)

× S̄.16

Also we let ωµ
αtα → ω × t̂17. For simplicity, let us assume that the congruence has

vanishing shear and expansion.18 For this case the two different approaches to spatial

curvature radius coincide and we will drop any instances of subscripts ’ns’ or ’ps’.

Introduce then agyro = d2
x

dτ2

0

, where x and τ0 are the inertial coordinates of a system

locally comoving with the congruence19. Also denoting the acceleration of the reference

congruence relative to an inertial system locally comoving with the reference congruence

by aref, we get from (45)20

DS̄

Dτ
=

γ3

γ + 1

([

agyro +
1

γ
(aref + ω × v)

]

× v

)

× S̄− γω × S̄. (46)

This is a perfect match with the result of the intuitive derivation performed in [2].

Analogously we may study (44) for the particular case of vanishing shear, thus

considering a rigid congruence. The three-dimensional version of this equation then

becomes

DS̄

Dτ
=

[

γ2v(aref × t̂) − γω + (γ − 1)(2γ + 1)(ω × t̂) × t̂

+ γv(γ − 1)

(

n̂

R
× t̂

) ]

× S̄. (47)

We may simplify this expression a bit by introducing ω = ω‖ + ω⊥, where ‖ and ⊥
means parallel respectively perpendicular to t̂. Also using v = vt̂ we readily find

DS̄

Dτ
=

[

γ2(aref × v) − γ

(

ω‖ +

(

2γ − 1

γ

)

ω⊥

)

+ γ(γ − 1)

(

n̂

R
× v

)]

× S̄. (48)

Again this is a perfect match with the intuitive formalism of [2].

16Strictly speaking, what we mean by the cross product a × b of two three-vectors a and b is

[Det(gij)]
− 1

2 ǫijkajbk where the indices have been lowered with the local three-metric (again assuming

local coordinates orthogonal to the congruence). Notice that in general (for congruences with

rotation) there are no global time-slices that are orthogonal to the congruence. The local three-metric

corresponding to local orthogonal coordinates is however well defined everywhere anyway. For a shearing

(expanding) congruence it will however be time dependent (whatever global time slices we choose).
17Letting ωµ = (0, ω) in coordinates locally comoving with the congruence, we have ωµ =

1

2

1√
g
ησǫσµγρωγρ, where g = −Det[gαβ] and ǫσµγρ is +1, −1 or 0 for σµγρ being an even, odd or

no permutation of 0, 1, 2, 3 respectively.
18This incidentally implies that the ’orthogonal’ three-metric mentioned in a previous footnote is

time independent.
19Working in another set of spatial coordinates agyro naturally transforms as a three-vector.
20Notice that D/Dτ corresponds to covariant differentiation with respect to the three-metric.
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8.1. The rotation vector relative to the reference observers.

Letting τ0 = γdτ denote local time for an observer comoving with the congruence we

can write (46) and (48) respectively as

DS̄

Dτ0
= Ω × S̄. (49)

Here Ω is given by (46)

Ω =
γ2

γ + 1
(agyro × v) +

γ

γ + 1
(aref × v) − ω‖ −

(

2 − 1

γ

)

ω⊥. (50)

This form is practical if the gyroscope is freely falling, in which case agyro = 0.

Alternatively we can get Ω from (48)

Ω = γ(aref × v) − ω‖ −
(

2γ − 1

γ

)

ω⊥ + (γ − 1)

(

n̂

R
× v

)

. (51)

This form is practical if the gyroscope follows some predetermined path while being

acted on by forces.

8.2. A note on the gyroscope axis and the projected spin vector

From the simple relation (see section 4.8) between the stopped spin vector and the

projected spin vector and the gyroscope axis respectively, we can use the law of rotation

for the stopped spin vector to derive corresponding differential equations for S and X

dS

dτ0

= γ2v

[

S · dv

dτ0

]

+ Ωe‖ × [S]⊥ + Ωe⊥ ×
(

1

γ
[S]‖ + γ[S]⊥

)

(52)

dX

dτ0
=− γ2 dv

dτ0
[X · v] + Ωe‖ × [X]⊥ + Ωe⊥ ×

(

γ[X]‖ +
1

γ
[X]⊥

)

. (53)

Here we have for brevity introduced

Ωe = γ(aref × v) − ω‖ −
(

2γ − 1

γ

)

ω⊥. (54)

Note that the dv
dτ0

entering (52) and (53) is the velocity derivative relative to the reference

frame (not relative to a freely falling frame). We note that these differential equations

are more complicated than the ones for the stopped spin vector. We conclude that if

we are interested in S or X, it is likely wise to first solve the equation for the stopped

spin vector and then (as in section 4.4) use the result to find S or X.

9. Motion along a straight line in static geometry

As a first example of how one may use the derived formalism, consider a train moving

along a straight spatial line in some static geometry. In fact, to be specific, we may

consider the train to be moving relative to an upwards accelerating platform in special

relativity. On the train we have suspended a gyroscope so that there are no torques

acting on it in the comoving system. We thus consider gyroscope motion along a straight
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line, with respect to a non-rotating but accelerating reference frame. Letting g = −aref

and τ0 = γτ , (48) is immediately reduced to

dS̄

dτ0

= −γ (g × v) × S̄. (55)

We understand that a gyroscope initially pointing in the forward direction will tip

forward as depicted in figure 7.

t = 0 t = dt

g

v

Figure 7. A train moving relative to a straight platform with proper upward

acceleration. A gyroscope with a torque free suspension will precess clockwise (for

positive v).

Note that the stopped spin vector with respect to the platform corresponds precisely

to the spin vector as perceived relative to the train. For example, if the stopped spin

vector points 45◦ down from the horizontal direction, the gyroscope as seen from the

train points 45◦ down from the horizontal direction. To express the gyroscope precession

with respect to coordinates comoving with the train we therefore just let τ0 → γτ in

(55) and we have the precession explicitly in terms of the time τ on the train. Relative

to the train, the gyrocope thus precesses at a steady rate given by Ωrelative train = γ2vg.

This means that the train in fact has a proper rotation, but more on this is given in [2].

We can parameterize the gyroscope trajectory by the distance s along the platform

rather than the time τ0. Then (55) can be expressed as

dS̄

ds
= −γ

(

g × t̂
)

× S̄. (56)

Assuming the train velocity to be low, the tipping angle per distance traveled is thus

independent of the velocity. We have simply dα/ds ≃ g. Thus on a stretch of length δs

we get a net rotation δα

δα ≃ gδs. (57)

If we want to express δs and g and in SI units we must divide the right hand side by c2

(expressed in SI units). Setting δs = 103 m and g = 9.81 m/s2 we get simply

δα =
9.81 · 103

(3 · 108)2
≈ 1 · 10−13(rad). (58)

This is quite a small angle, and we understand that the relativistic effects of gyroscope

precession for most cases here at Earth are small. Notice how simple this calculation

was in the stopped spin vector three-formalism.
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10. Axisymmetric spatial geometries, and effective rotation vectors

The equations (46) and (48) both describe how the gyroscope rotates with respect to

a coordinate frame that is parallel transported with respect to the spatial geometry.

Suppose then that we consider motion in the equatorial plane of some axisymmetric

geometry. As a specific example we may want to know the net rotation of the gyroscope

relative to its initial configuration after a full orbit (not necessarily a circular orbit). We

must then take into consideration that a parallel transported frame in general will be

rotated relative to its initial configuration after a complete orbit.

We can however introduce a new reference frame, that rotates relative to local

coordinates spanned by r̂ and ϕ̂, in the same manner as a parallel transported reference

frame does on a plane. In other words, if we for instance consider a counterclockwise

displacement (δϕ,δr), then relative to the local vectors r̂ and δϕ̂, the new reference

frame should turn precisely δϕ clockwise. Such a reference frame would always return

to its initial configuration after a full orbit.

To find the rotation of the new reference frame with respect to a parallel transported

frame, we first investigate how a vector that is parallel transported with respect to the

curved axisymmetric geometry rotates relative to the local coordinates spanned by r̂

and ϕ̂.

10.1. The rotation of a parallel transported vector relative to r̂ and ϕ̂

The line element for a two-dimensional axisymmetric spatial geometry can be written

in the form21

ds2 = grrdr2 + r2dϕ2. (59)

As depicted in figure 8 we can imagine an embedding of the geometry, where we cut out

a small section and put it on a flat plane. What we want is an expression for how much

a vector that is parallel transported, for example along the depicted straight dashed

line, rotates relative to the local coordinates r̂ and ϕ̂. We understand that the rotation

angle corresponds to the angle δα as depicted.

Using the notations introduced in figure 8 we have simply

R0δα = rδϕ (60)

(R0 + ds)δα = (r + dr)δϕ. (61)

Eliminating R0 and using ds =
√

grrdr it follows readily that

δα =
δϕ√
grr

. (62)

21Note that if we consider for instance a Kerr black hole, where we (in standard representation)

have dϕdt-terms, we cannot simply select the spatial terms (without dt) to get the spatial line element.

There is however an effective spatial geometry also for this case. We may derive the form of this

geometry by for instance sending photons back and forth between nearby spatial points and checking

the proper time that passes.
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replacemen
(r + δr)δϕ

rδϕ

α + δα

α

R0

δs

δα

Figure 8. Cutting out a section of a certain dϕ and dr of the embedded geometry (to

the left) and putting it on a flat plane (to the right). Note that r is the circumferential

radius, and R0 is the radius of curvature for a circle at the r in question (not to be

confused with the R of the trajectory along which we are parallel transporting the

vector)

So this tells us how a parallel transported vector turns relative to the local r̂ and ϕ̂, for

a small displacement in ϕ and r.

10.2. The new reference frame, and the effective rotation vector

On a flat plane, the corresponding expression to (62) is of course simply

δα = δϕ. (63)

A reference frame that with respect to r̂ and ϕ̂ rotates as if we had a flat geometry

would then according to (62) and (63) rotate relative to a parallel transported reference

frame with an angular frequency (never mind the sign for the moment)

ωspace =
dϕ

dτ0

(

1
√

grr

− 1

)

. (64)

Note also that we have
∣
∣
∣
∣
∣

dϕ

dτ0

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

rdϕ

dτ0

∣
∣
∣
∣
∣

1

r
=

1

r
|v · ϕ̂| =

1

r
|v × r̂|. (65)

Thinking about the sign for a second, we realize that with respect to the ’would-be-flat’

reference frame, a parallel transported reference frame will have a rotation given by

ωspace =
1

r

(

1√
grr

− 1

)

v × r̂. (66)

Knowing that infinitesimal rotations can simply be added (to lowest order), using (66)

together with (51) and letting g = −aref, we get the gyroscope rotation relative to the
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’would-be-flat’-grid as22

Ωeffective = (γ − 1)

(

n̂

R
× v

)

− γ(g × v) − ω‖ − ω⊥

(

2γ − 1

γ

)

+
1

r

(

1
√

grr

− 1

)

v × r̂. (67)

We can integrate this equation to find the net precession of a gyroscope transported

along any path in the axisymmetric geometry.

10.3. Comments on the integrability

As a particular application of (67), we can consider the net precession of a gyroscope

transported along some closed orbit. Since the ’would-be-flat’ reference frame returns to

its original configuration after a full turn, we just integrate the effects of the infinitesimal

rotations following from (67) to calculate the net turn. Notice however that to do this

straightforwardly, we need Ωeffective in the coordinate base of the reference frame (i.e.

the would-be-flat frame). In general we however only have Ωeffective in the coordinates

adapted to the stationary observers. For most cases where we would be interested in

motion in an axisymmetric geometry, like motion in the equatorial plane of a Kerr black

hole, this however presents no problem. Then all rotations are in the plane of motion

and the rotation vector Ωeffective is constant (in the ẑ-direction) in the coordinate basis

of the reference frame. Notice that the τ0 implicitly entering these equations in the

Ωeffective is the proper time for a stationary observer. If we instead want to express the

precession in global (Schwarzschild) time, we just multiply by the time dilation factor.

Even assuming all rotations to be in the plane of motion, we must still in general

integrate to get the net precession of the gyroscope23. For the particular case of circular

motion with constant speed, assuming the time dilation (i.e. the lapse), ω and g · r̂ to

be independent of ϕ (as is the case for the equatorial plane of a Kerr black hole), there

is however no need to integrate at all since all the terms of (67) are constant. The result

follows immediately, assuming that we know ω, g and grr. Incidentally it follows from

(60) and (61) that R = r
√

grr for circular motion.

10.4. Comment regarding g, ω and grr

The reference background (fixed to the stars) around a spinning planet, like the Earth,

is both accelerating and curved. Also there is frame dragging due to the planet rotation,

22If the geometry in question contains regions where the circumferential radius has a minimum (in

2 dimensions one may call these regions necks from the appearance of an embedding of such regions),

one can modify (67) a little by introducing a ± sign in the 1√
grr

-term. If r̂, which by definition is

taken to point away from the center of symmetry, points in the direction of increasing r, we choose the

positive sign, otherwise the negative sign should be chosen. Note that 1√
grr

is zero for radii where the

sign changes, so there is no discontinuity in Ωeffective.
23Parameterizing the trajectory by some parameter λ, we understand that time dilation, R, ω, v

and g all depends on λ. Assuming all rotations to be in the plane of motion it is effectively a single

(scalar) integral (of the net rotation angle around the z-axis).
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giving a non-zero rotation of the stationary reference observers. If we have the spacetime

metric, we can easily find ω, g and grr. If we do not have an exact spacetime metric

however, as is the case for a spinning planet, we need some approximate method (like the

Post-Newtonian approximation) to estimate ω, g and grr. Once this is done, assuming

the approximation to be valid, (67) gives an accurate description of the precession even

considering relativistic speeds.

In the case of a rotating (Kerr) black hole, we do know the metric, and the precession

relative to the stationary observers can readily be calculated. Notice that within the

ergosphere , there are no stationary (timelike) observers. Still we can in principle use the

formalism of this paper also within the ergosphere. To do this we consider coordinates

that rigidly rotate around the black hole sufficiently fast to be timelike in the region in

question. Indeed for the particular case of circular motion there is a paper [6], that uses

this technique.

10.5. Free orbit at large radii from a Schwarzschild black hole

As a simple example, consider a freely falling gyroscope (agyro = 0) orbiting in the

equatorial plane of a Schwarzschild black hole. Using the static observers as our reference

congruence, we have ω = 0. Then it follows from (50) that we have

Ωeffective =
γ

γ + 1
aref × v + ωspace. (68)

The Schwarzschild line element in the equatorial plane is given by

dτ 2 = (1 + 2φ) dt2 − (1 + 2φ)−1 dr2 − r2dϕ2. (69)

Here φ = −M
r
. For convenience we now consider large r, so that M/r is small. We have

then the acceleration of the freely falling frames g ≃ ∂φ
∂r

(counted positive in the inwards

direction). It follows readily, using (66), that for this case we have

ωspace =
1

r

(√

1 + 2φ − 1
)

v × r̂ (70)

≃ φ

r
· v × r̂ (71)

≃ − g · v × r̂. (72)

For the large r in question the velocities are low and we may set γ ≃ 1. Using (72)

together with aref = −g and g = −gr̂ in (68) gives

Ωeffective ≃ − 1

2
(g × v) − g × v (73)

= − 3

2
(g × v). (74)

This result was derived by W. de Sitter in 1916 (although in a quite different manner

than that described here, see [1] p. 1119). We may note that one third of the net effect

comes from the spatial geometry. Using a little bit of Newtonian mechanics it is easy

to derive that for a satellite orbiting the Earth at a radius R ≃ REarth, inserting the
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proper factor of c to handle SI-units, (74) amounts to

Ωeffective =
3

2c2

GM

R2

√

GM

R
≃ 1.3 · 10−12rad/s

≃ 4.0 · 10−5 rad

year
≃ 8.3

arcsec

year
. (75)

Knowing that the exterior metric of the Earth is approximately Schwarzschild, we have

then an approximation of the effective rotation vector for a gyroscope orbiting the Earth.

We can refine this approximation by considering an appropriate non-zero ω, as discussed

earlier. Note that, as discussed in section 4.10, the derived precession is the precession

with respect to a star-calibrated reference system on the satellite.

In [1] p. 1117-1120, a similar explicitly three-dimensional formalism of spin

precession is derived. It is only valid in the Post-Newtonian regime however. The

precession given by (67) is however exact (assuming an ideal gyroscope). For instance,

considering the above example of free circular motion in a static geometry, we can easily

calculate the exact expressions for g and v, and thus express the gyroscope precession

rate arbitrarily close to the horizon.

11. Summary and conclusion

We have seen how we in a covariant manner can derive an effectively three-dimensional

spin precession formalism in a general spacetime. In particular the simple form of (16)

seems novel.

In [1] p. 1117 a similar approach is taken where they consider only the standard

spin vector, but expressed relative to a boosted set of base vectors. They however only

apply it to the post-Newtonian regime.

As mentioned earlier, Jantzen et. al. ([4, 7, 8]) have already pursued the same

general idea, although the specific approach and final form of the results differ. In

particular they have not employed the explicit 3-dimensional formalism.

While the general formalism is derived assuming a general congruence, it seems to

have its greatest use as a simple three-dimensional formalism assuming a non-shearing

congruence. Then we have a fixed spatial geometry and the spatial parallel transport is

unambiguous. For this particular case, the derived three-dimensional formalism verifies

the result of the intuitive derivation of [2]. We have also given examples of how the

three dimensional formalism can be used to easily find results of physical interest.

Appendix A. Simplifying (14)

In the expansion of the second term within the brackets of (14) there will according to

(13) be terms of the type Dtµ

Dτ
. These can be rewritten in terms of Duµ

Dτ
and Dηµ

Dτ
since

we have

uµ = γ(ηµ + vtµ) → tµ =
uµ

γv
− ηµ

v
. (A.1)
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Dealing with Duµ

Dτ
rather than Dtµ

Dτ
is convenient since the former readily can be expressed

in terms of spatial curvature and velocity changes relative to the congruence, see [3].

Also Duµ

Dτ
has a direct physical relevance. Using the identity γ−1

γv
= γv

γ+1
, it is then easy

to derive an alternative form of Kµ
α

Kµ
α = δµ

α +
1

γ + 1
(uα − γηα) (ηµ + uµ) . (A.2)

Using this in the second term within the brackets of (14) we have

DKµ
α

Dτ
=

D

Dτ







1

γ + 1
(uα − γηα)
︸ ︷︷ ︸

γvtα

(ηµ + uµ)
︸ ︷︷ ︸

(γ+1)ηµ+γvtµ







. (A.3)

As we expand this expression there will be terms containing ηµ, ηα and tµtα. These

we will disregard for the following reasons. Terms containing ηα will anyway die when

multiplied by S̄α (as they are in (14)). Terms containing ηµ we will disregard since

we for the moment only are interested in P µ
αS̄α = (gµ

α + ηµηα)S̄α. When we have a

neat expression for this we can find the ηµ-part a posteriori using the orthogonality of

S̄α and ηα. We will disregard terms of the type tµtα since we know that these must

cancel anyway for S̄α to stay normalized (as we know it must by construction of the

Fermi transport and the relation to the stopped spin vector)24. Note however that in

principle, we should contract with the inverse K−1ν
µ
25, before disregarding the terms

of the described types (see (14)). The form of the inverse is however such that we can

carry out the effective cancellations prior to applying the inverse26. We then readily

find

DKµ
α

Dτ
eff
=

γv

γ + 1

([
Duα

Dτ
− γ

Dηα

Dτ

]

⊥
tµ + tα

[
Duµ

Dτ
+

Dηµ

Dτ

]

⊥

)

. (A.4)

By the perpendicular sign ⊥ we here mean that we should select only the part orthogonal

to both tµ and ηµ. By
eff
= we indicate that the equality holds excepting terms of the

type ηµ, ηα and tµtα. In an analogous manner we readily find for the first term within

24From normalization follows that S̄α
DS̄α

Dτ
= 0. For the particular case where S̄α = S̄tα momentarily,

it follows that any net term of the form atµtα in the right hand side of (14) must vanish. Since the

parameter a does not depend on Sα it follows that it must vanish entirely. The point is that the form

of (A.3) is such that, when expanded it can be written as a sum of tensors of the type AµBα. Letting

the suffix ⊥ indicate that only the part orthogonal to both ηµ and tµ should be selected, each such

term can be written in the form (tµtρA
ρ + [Aµ]⊥)(tαtσBσ + [Bα]⊥). Adding up the resulting terms of

the type tµtα (including the terms of this type coming from the first term within the brackets of (14))

into a single term atµtα we know that a must be zero.
25Note from (13) that the effect of contracting K−1µ

α with a contravariant vector is that it shortens

the tµ-component of the vector by a γ-factor, while the rest of the on-slice (orthogonal to ηµ) part of

thee vector is unaffected.
26If the inverse had contained for instance terms of the type tνηµ – we could not cancel ηµ terms

directly within the brackets of (14). That the inverse is not containing any such terms is a benefit of

the particular gauge choice in choosing Kν
µ – where we had a freedom to include any terms containing

ηµ.
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brackets of (14)

uµKρ
α

Duρ

Dτ
eff
= γvtµ

[
Duα

Dτ

]

⊥
. (A.5)

Now use (A.4) and (A.5) in (14). Shorten the tµ components by a γ factor (according

to the effect of the inverse), and neglect the ηµ-term. We readily find

P µ
α

DS̄α

Dτ
=

γv

γ + 1
S̄α

(

tµ
[

D

Dτ
(uα + ηα)

]

⊥
− tα

[
D

Dτ
(uµ + ηµ)

]

⊥

)

. (A.6)

Now that we have this compact expression we may also find the ηµ term that we earlier

omitted. From orthogonality, S̄αηα = 0, follows that DS̄α

Dτ
ηα = −S̄α Dηα

Dτ
which gives

DS̄µ

Dτ
=

γv

γ + 1
S̄α

(

tµ
[

D

Dτ
(uα + ηα)

]

⊥
− tα

[
D

Dτ
(uµ + ηµ)

]

⊥

)

+ ηµS̄α Dηα

Dτ
. (A.7)

So here we have the transport equation for the stopped spin vector (giving the rotation

relative to inertial coordinates).

Appendix B. A note concerning the intrinsic angular momentum

As an idealized scenario we consider a special relativistic gyroscope which we model

as an isolated system of point particles undergoing four-momentum conserving internal

collisions. Following the discussion in [9] p. 87-90, we define the angular momentum

tensor with respect to the spacetime origin as

Lµν =
∑

xµpν − xνpµ. (B.1)

Here the summation runs over events xµ and four-momenta pµ for the various particles

at a particular time slice t = const. The (Pauli-Lubanski) spin vector can be written as

Sµ =
1

2
ǫµνρσLνρV σ (B.2)

Here V µ is the four-velocity of the center of mass and ǫµνρσ is the Levi-Civita tensor

(density) where ǫxyz0 = 1. Furthermore we introduce an angular momentum four-vector

hµ := (0,h), where h is the standard (relativistic) angular momentum three-vector, with

respect to our reference coordinates. Defining ηµ as a purely time directed normalized

vector with respect to the reference coordinates, we can write

hµ =
1

2
ǫµνρσLνρησ. (B.3)

Letting v be the velocity of the center of mass, γ the corresponding gamma factor and

setting (0,v) := vtµ with respect to the reference coordinates, we can decompose the

four-velocity of the center of mass as V µ = γ(ηµ + vtµ). Using this in (B.2) together

with (B.3), it follows that

Sµ = γhµ + γv
1

2
ǫµνρσLνρtσ. (B.4)
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It is a short exercise to show that in three-formalism this amounts to

h = S/γ + rc × p. (B.5)

Here h is the net angular momentum of the system of point particles, rc is the center of

mass (center of energy), γ is the gamma factor for the velocity of the center of mass, p

is the net relativistic three-momentum and S is the spatial part of the spin vector. Note

that the intrinsic angular momentum is not given by S but by S/γ. Note incidentally

also that there is a difference between the center of mass and the proper center of mass

(see [9] p. 87-90). As pointed out e.g. in [10], the gyroscope center of mass does not in

general lie on the gyroscope central axis.

A real gyroscope moving under the influence of forces is neither (simply) consisting

of point particles nor is it isolated. A more detailed analysis would likely assume a gen-

eral energy momentum tensor T µν and allow for external forces acting on the elements

of the gyroscope. For the purposes of this article the simple derivation outlined above

will however suffice.
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